
 

 

 

 

Lab Date:                 Number: 

        Name Surname: 

Lab Director:                Group/Sub-group: ….. / …. 

Lab Location: O Block - Automatic Control Laboratory 

Lab Name: Machine Theory - 3 

Subject: Position Control of Rotary Servo Base Unit (SRV02) using PV and PIV Controllers 

 

Apparatus and tools: 

- Computer with MATLAB-Simulink and QUARC software 

- Data acquisition device, power amplifier, and main components of the SRV02 (e.g. actuator, 

sensors). 

 

Aim of the experiment: 

-Deriving the dynamics equation and transfer function for the SRV02 servo plant using the 

first-principles. 

- Design of a proportional-velocity (PV) controller for position control of the servo load shaft 

to meet certain time-domain requirements. 

-Design of a proportional-velocity-integral (PIV) controller to track a ramp reference signal. 

-Implementation of the controllers on the Quanser SRV02 device to evaluate their 

performance. 

 

Modeling 

The objective of this experiment is to find a transfer function that describes the rotary motion 

of the SRV02 load shaft. The dynamic model is derived analytically from classical mechanics 

principles and using experimental methods. 

Topics Covered 

• Deriving the dynamics equation and transfer function for the SRV02 servo plant using 

the first-principles. 

• Obtaining the SRV02 transfer function using a frequency response experiment. 

• Obtaining the SRV02 transfer function using a bump test. 
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• Tuning the obtained transfer function and validating it with the actual system response. 

Prerequisites 
In order to successfully carry out this laboratory, the user should be familiar with the 

following: 

• Data acquisition device (e.g. Q2-USB), the power amplifier (e.g. VoltPAQ-X1), and the 

main components of the SRV02 (e.g. actuator, sensors), as described in References [2], 

[4], and [6], respectively. 

• Wiring and operating procedure of the SRV02 plant with the amplifier and data-aquisition 

(DAQ) device, as discussed in Reference [6]. 

• Transfer function fundamentals, e.g. obtaining a transfer function from a differential 

equation. 

• Laboratory described in Appendix A to get familiar with using QUARCrwith the SRV02. 

1.1 Background 

The angular speed of the SRV02 load shaft with respect to the input motor voltage can be 

described by the following first-order transfer function 

  (1.1.1) 

where Ωl(s) is the Laplace transform of the load shaft speed ωl(t), Vm(s) is the Laplace 

transform of motor input voltage vm(t), K is the steady-state gain, τ is the time constant, and s 

is the Laplace operator. 

The SRV02 transfer function model is derived analytically in Section 1.1.1 and its K and τ 

parameters are evaluated. These are known as the nominal model parameter values. The 

model parameters can also be found experimentally. Sections 1.1.2.1 and 1.1.2.2 describe 

how to use the frequency response and bump-test methods to find K and τ. These methods are 

useful when the dynamics of a system are not known, for example in a more complex system. 

After the lab experiments, the experimental model parameters are compared with the nominal 

values. 

1.1.1 Modeling Using First-Principles 

1.1.1.1 Electrical Equations 

The DC motor armature circuit schematic and gear train is illustrated in Figure 1.1. As 

specified in [6], recall that Rm is the motor resistance, Lm is the inductance, and km is the back-

emf constant. 



 

 

Figure 1.1: SRV02 DC motor armature circuit and gear train 

The back-emf (electromotive) voltage eb(t) depends on the speed of the motor shaft, ωm, and 

the back-emf constant of the motor, km. It opposes the current flow. The back emf voltage is 

given by: 

eb(t) = kmωm(t) 

Using Kirchoff's Voltage Law, we can write the following equation: 

(1.1.2) 

  (1.1.3) 

Since the motor inductance Lm is much less than its resistance, it can be ignored. Then, the 

equation becomes 

 Vm(t) − RmIm(t) − kmωm(t) = 0 (1.1.4) 

Solving for Im(t), the motor current can be found as: 

  (1.1.5) 

1.1.1.2 Mechanical Equations 

In this section the equation of motion describing the speed of the load shaft, ωl, with respect 

to the applied motor torque, τm, is developed. 

Since the SRV02 is a one degree-of-freedom rotary system, Newton's Second Law of Motion 

can be written as: 

 J · α = τ (1.1.6) 

where J is the moment of inertia of the body (about its center of mass), α is the angular 

acceleration of the system, and τ is the sum of the torques being applied to the body. As 



 

illustrated in Figure 1.1, the SRV02 gear train along with the viscous friction acting on the 

motor shaft, Bm, and the load shaft Bl are considered. The load equation of motion is 

(1.1.7) 

where Jl is the moment of inertia of the load and τl is the total torque applied on the load. The 

load inertia includes the inertia from the gear train and from any external loads attached, e.g. 

disc or bar. The motor shaft equation is expressed as: 

  (1.1.8) 

where Jm is the motor shaft moment of inertia and τml is the resulting torque acting on the 

motor shaft from the load torque. The torque at the load shaft from an applied motor torque 

can be written as: 

 τl(t) = ηgKgτml(t) (1.1.9) 

where Kg is the gear ratio and ηg is the gearbox efficiency. The planetary gearbox that is 

directly mounted on the 

SRV02 motor (see [6] for more details) is represented by the N1 and N2 gears in Figure 1.1 

and has a gear ratio of 

  (1.1.10) 

This is the internal gear box ratio. The motor gear N3 and the load gear N4 are directly meshed 

together and are visible from the outside. These gears comprise the external gear box which 

has an associated gear ratio of 

  (1.1.11) 

The gear ratio of the SRV02 gear train is then given by:  

Kg = KgeKgi 

Thus, the torque seen at the motor shaft through the gears can be expressed as: 

(1.1.12) 

  (1.1.13) 

Intuitively, the motor shaft must rotate Kg times for the output shaft to rotate one 

revolution. 

 

θm(t) = Kgθl(t) (1.1.14) 

We can find the relationship between the angular speed of the motor shaft, ωm, and the 

angular speed of the load shaft, ωl by taking the time derivative: 

 ωm(t) = Kgωl(t) (1.1.15) 

To find the differential equation that describes the motion of the load shaft with respect to an 

applied motor torque substitute (1.1.13), (1.1.15) and (1.1.7) into (1.1.8) to get the following: 



 

  (1.1.16) 

Collecting the coefficients in terms of the load shaft velocity and acceleration gives 

  (1.1.17) 

Defining the following terms:   

 Jeq = ηgKg2Jm + Jl (1.1.18) 

simplifies the equation as: 

Beq = ηgKg2Bm + Bl (1.1.19) 

  (1.1.20) 

1.1.1.3 Combining the Electrical and Mechanical Equations 

In this section the electrical equation derived in Section 1.1.1.1 and the mechanical equation 

found in Section 1.1.1.2 are brought together to get an expression that represents the load 

shaft speed in terms of the applied motor voltage. The motor torque is proportional to the 

voltage applied and is described as 

 τm(t) = ηmktIm(t) (1.1.21) 

where kt is the current-torque constant (N.m/A), ηm is the motor efficiency, and Im is the 

armature current. See [6] for more details on the SRV02 motor specifications. 

We can express the motor torque with respect to the input voltage Vm(t) and load shaft speed 

ωl(t) by substituting the motor armature current given by equation 1.1.5 in Section 1.1.1.1, 

into the current-torque relationship given in equation 1.1.21: 

  (1.1.22) 

To express this in terms of Vm and ωl, insert the motor-load shaft speed equation 1.1.15, into 

1.1.21 to get: 

  (1.1.23) 

If we substitute (1.1.23) into (1.1.20), we get: 

  (1.1.24) 

After collecting the terms, the equation becomes 

  (1.1.25) 



 

This equation can be re-written as: 

  (1.1.26) 

where the equivalent damping term is given by: 

  (1.1.27) 

and the actuator gain equals 

  (1.1.28) 

1.1.2 Modeling Using Experiments 

In Section 1.1.1 you learned how the system model can be derived from the first-principles. A 

linear model of a system can also be determined purely experimentally. The main idea is to 

experimentally observe how a system reacts to different inputs and change structure and 

parameters of a model until a reasonable fit is obtained. The inputs can be chosen in many 

different ways and there are a large variety of methods. In Sections 1.1.2.1 and 1.1.2.2, two 

methods of modeling the SRV02 are outlined: (1) frequency response and, (2) bump test. 

1.1.2.1 Frequency Response 

In Figure 1.2, the response of a typical first-order time-invariant system to a sine wave input is 

shown. As it can be seen from the figure, the input signal (u) is a sine wave with a fixed 

amplitude and frequency. The resulting output (y) is also a sinusoid with the same frequency 

but with a different amplitude. By varying the frequency of the input sine wave and observing 

the resulting outputs, a Bode plot of the system can be obtained as shown in Figure 1.3. 

 

Figure 1.2: Typical frequency response 



 

The Bode plot can then be used to find the steady-state gain, i.e. the DC gain, and the time 

constant of the system. The cuttoff frequency, ωc, shown in Figure 1.3 is defined as the 

frequency where the gain is 3 dB less than the maximum gain (i.e. the DC gain). When 

working in the linear non-decibel range, the 3 dB frequency is defined as the frequency where 

the gain is , or about 0.707, of the maximum gain. The cutoff frequency is also known as 

the bandwidth of the system which represents how fast the system responds to a given input. 

 

Figure 1.3: Magnitude Bode plot 

The magnitude of the frequency response of the SRV02 plant transfer function given in 

equation 1.1.1 is defined as: 

  (1.1.29) 

where ω is the frequency of the motor input voltage signal Vm. We know that the transfer 

function of the system has the generic first-order system form given in Equation 1.1.1. By 

substituting s = j w in this equation, we can find the frequency response of the system as: 

  (1.1.30) 

Then, the magnitude of it equals 

  (1.1.31) 

Let's call the frequency response model parameters Ke,f and τe,f to differentiate them from the 

nominal model parameters, K and τ, used previously. The steady-state gain or the DC gain 

(i.e. gain at zero frequency) of the model is: 



 

Ke,f = |Gwl,v(0)|    (1.1.32)  

1.1.2.2 Bump Test 

The bump test is a simple test based on the step response of a stable system. A step input is 

given to the system and its response is recorded. As an example, consider a system given by 

the following transfer function: 

  (1.1.33) 

The step response shown in Figure 1.4 is generated using this transfer function with K = 5 

rad/V.s and τ = 0.05 s. 

The step input begins at time t0. The input signal has a minimum value of umin and a 

maximum value of umax. The resulting output signal is initially at y0. Once the step is applied, 

the output tries to follow it and eventually settles at its steady-state value yss. From the output 

and input signals, the steady-state gain is 

  (1.1.34) 

 

Figure 1.4: Input and output signal used in the bump test method 

where ∆y = yss −y0 and ∆u = umax −umin. In order to find the model time constant, τ, we can 

first calculate where the output is supposed to be at the time constant from: 

 y(t1) = 0.632yss + y0 (1.1.35) 

Then, we can read the time t1 that corresponds to y(t1) from the response data in Figure 1.4. 

From the figure we can see that the time t1 is equal to: 



 

t1 = t0 + τ 

From this, the model time constant can be found as: 

(1.1.36) 

τ = t1 − t0 (1.1.37) 

Going back to the SRV02 system, a step input voltage with a time delay t0 can be expressed 

as follows in the Laplace domain: 

  (1.1.38) 

where Av is the amplitude of the step and t0 is the step time (i.e. the delay). If we substitute this 

input into the system transfer function given in Equation (1.1.1), we get: 

  (1.1.39) 

We can then find the SRV02 load speed step response, wl(t), by taking inverse Laplace of this 

equation. Here we need to be careful with the time delay t0 and note that the initial condition 

is ωl(0−) = ωl(t0). 

  (1.1.40) 

1.2 Pre-Lab Questions 

Before you start the lab experiments given in Section 1.3, you should study the background 

materials provided in Section 1.1 and work through the questions in this Section. 

1. In Section 1.1.1.3 we obtained an equation (1.1.26) that described the dynamic behavior 

of the load shaft speed as a function of the motor input voltage. Starting from this 

equation, find the transfer function . 

Answer 1.2.1 

 Outcome Solution 
 A-1 Taking the Laplace transform of the equations and assuming ωl(0−) = 0 

 gives  

 JeqsΩl(s) + Beq,vΩl(s) = AmVm(s) (Ans.1.2.1) 

A-2 

Solving for Ωl(s)/Vm(s) gives the plant transfer 

function 

 

  (Ans.1.2.2) 

2. Express the steady-state gain (K) and the time constant (τ) of the process model 

(Equation (1.1.1)) in terms of the Jeq, Beq,v, and Am parameters. 

Answer 1.2.2 



 

 Outcome Solution 
 A-1 We need to match the coefficients of the transfer function found in 

(Ans.1.2.2) to the coefficients of the transfer function 

in equation 1.1.1. 

 A-2 The time constant parameter is 

  (Ans.1.2.3) 

and the steady-state gain is 

  (Ans.1.2.4) 

3. Calculate the Beq,v and Am model parameters using the system specifications given in [6]. 

The parameters are to be calculated based on an SRV02-ET in the high-gear 

configuration. 

Answer 1.2.3 

 Outcome Solution 
A-2 The Beq,v viscous damping expression is given in Equation 

1.1.27. All the parameters are defined in Reference [6] 

including the experimentally determined equivalent 

viscous damping parameter Beq = 0.015N ms/rad (in 

the high-gear configuration). Substituting all the 

specifications into 1.1.27 gives 

 Beq,v = 0.0844N m s / rad (Ans.1.2.5) 

Evaluating the actuator gain expression in 1.1.28 with 

the SRV02 parameters gives 

 Am = 0.129 N m/V (Ans.1.2.6) 

4. Calculate the moment of inertia about the motor shaft. Note that Jm = Jtach + Jm,rotor where 

Jtach and Jm,rotor are the moment of inertia of the tachometer and the rotor of the SRV02 

DC motor, respectively. Use the specifications given in [6]. 

Answer 1.2.4 

 Outcome Solution 
 A-2 The moment of inertia about the motor shaft equals 

 Jm = Jtach + Jm,rotor (Ans.1.2.7) 

Evaluating the above expression with the parameters 

outlined in [6] gives 

 Jm = 4.606251061 × 10−7 kg m2 (Ans.1.2.8) 



 

5. The load attached to the motor shaft includes a 24-tooth gear, two 72-tooth gears, and a 

single 120-tooth gear along with any other external load that is attached to the load shaft. 

Thus, for the gear moment of inertia 

Jg and the external load moment of inertia Jl,ext, the load inertia is Jl = Jg + Jl,ext. Using the 

specifications given in [6] find the total moment of inertia Jg from the gears . Hint: Use 

the definition of moment of inertia for a disc . 

Answer 1.2.5 

 Outcome Solution 
 A-2 The formula to calculate the moment of inertia of a disc is 

  (Ans.1.2.9) 

where m is the mass and r is the radius. Assuming the 

gears are discs and using the parameters given in 

Reference [6], the moment of inertia of the 24-tooth, 

72-tooth, and 120-tooth gears are 

J24 = 1.01 × 10−7 kg m2 (Ans.1.2.10) 

J72 = 5.44 × 10−6 kg m2 

and 

(Ans.1.2.11) 

J120 = 4.18 × 10−5 kg m2 

The total moment of inertia from the gears is 

(Ans.1.2.12) 

Jg = J24(120/24)2 + 2J72 + J120 

which equals 

(Ans.1.2.13) 

Jg = 5.52 × 10−5 kg m2 (Ans.1.2.14) 

6. Assuming the disc load is attached to the load shaft, calculate the inertia of the disc load, 

Jext,l, and the total load moment of inertia, Jl. 

Answer 1.2.6 

 Outcome Solution 
A-2 Using the formula in Ans.1.2.9 with the mb and rb disc 

load parameters found in Reference [6], the external 

load moment of inertia equals 

 Jl,ext = 5.00 × 10−5 kg m2 (Ans.1.2.15) 

Using Jl = Jg + Jl,ext, the total load moment of inertia is 

 Jl = 1.05 × 10−4 kg m2 (Ans.1.2.16) 

 7.Evaluate the equivalent moment of inertia Jeq. 



 

Answer 1.2.7 

 Outcome Solution 
A-2 Using Equation 1.1.18 with the gear train and motor 

specifications listed in Reference [6] and the load 

inertia found in 1.2.6, the equivalent moment of 

inertia acting on the SRV02 motor shaft is 

 Jeq = 0.00214 kg m2. (Ans.1.2.17) 

8. Calculate the steady-state model gain K and time constant τ. These are the nominal 

model parameters and will be used to compare with parameters that are later found 

experimentally. 

Answer 1.2.8 

 Outcome Solution 
A-2 Using equations Ans.1.2.3 and Ans.1.2.4 with the Beq,v, 

Am, and Jeq parameters found in equations Ans.1.2.5, 

Ans.1.2.6, and Ans.1.2.17, the steady-state gain is 

 K = 1.53 rad/(V s) (Ans.1.2.18) 

and the model time constant is 

 τ = 0.0253 s (Ans.1.2.19) 

9. Referring to Section 1.1.2.1, find the expression representing the time constant τ of the 

frequency response model given in Equation 1.1.31. Begin by evaluating the magnitude 

of the transfer function at the cutoff frequency ωc. 

Answer 1.2.9 

 Outcome Solution 

A-1 By definition, the DC gain drops 3 dB (or ) at this 

frequency. Therefore, 

  (Ans.1.2.20) 

A-2 Applying this to the SRV02 frequency response 

magnitude in 1.1.31 

above gives: 

  (Ans.1.2.21) 

We can then solve for the time constant as: 



 

  (Ans.1.2.22) 

10. Referring to Section 1.1.2.2, find the steady-state gain of the step response and 

compare it with Equation 1.1.34. Hint: The the steady-state value of the load shaft speed 

can be defined as ωl,ss = lim t→∞ ωl(t). 

Answer 1.2.10 

 Outcome Solution 
 A-2 Using the definition of the steady-state value of the load shaft 

ωl,ss = lim t→∞ωl(t)                          (Ans.1.2.23)  

The limit of the servo step response given in (1.1.40) is 

 ωl,ss = K Av + ωl(t0) (Ans.1.2.24) 

and the steady-state gain is 

  (Ans.1.2.25) 

 A-3 This is consistent with the ∆y/∆u relationship in Equation 1.1.34. 

11.Evaluate the step response given in equation 1.1.40 at t = t0 + τ and compare it with 

Equation 

1.1.34. 

Answer 1.2.11 

 Outcome Solution 
 A-2 Substituting t = t0 + τ in equation 1.1.40 gives the load shaft rate 

 ωl(t0 + τ) = K Av (1 − e−1) + ωl(t0) (Ans.1.2.26) 

 A-3 This is consistent with the y(t1) expression in equation 1.1.34. 

1.4 System Requirements 

Before you begin this laboratory make sure: 

• QUARCris installed on your PC, as described in Reference [1]. 

• You have a QUARC compatible data-aquisition (DAQ) card installed in your PC. For a 

listing of compliant DAQ cards, see Reference [5]. 

• SRV02 and amplifier are connected to your DAQ board as described Reference [6]. 

 



 

SRV02 POSITION CONTROL 

The objective of this laboratory is to develop feedback systems that control the position of the 

rotary servo load shaft. Using the proportional-integral-derivative (PID) family, controllers 

are designed to meet a set of specifications. 

Topics Covered 

• Design of a proportional-velocity (PV) controller for position control of the servo load 

shaft to meet certain time-domain requirements. 

• Actuator saturation. 

• Design of a proportional-velocity-integral (PIV) controller to track a ramp reference 

signal. 

• Simulation of the PV and PIV controllers using the developed model of the plant to ensure 

the specifications are met without any actuator saturation. 

• Implementation of the controllers on the Quanser SRV02 device to evaluate their 

performance. 

Prerequisites 
In order to successfully carry out this laboratory, the user should be familiar with the 

following: 

• Data acquisition device (e.g. Q2-USB), the power amplifier (e.g. VoltPAQ-X1), and the 

main components of the SRV02 (e.g. actuator, sensors), as described in References [2], 

[4], and [6], respectively. 

• Wiring and operating procedure of the SRV02 plant with the amplifier and data-aquisition 

(DAQ) device, as discussed in Reference [6]. 

• Transfer function fundamentals, e.g. obtaining a transfer function from a differential 

equation. 

• Laboratory described in Appendix A to get familiar with using QUARCrwith the SRV02. 

2.1 Background 

2.1.1 Desired Position Control Response 

The block diagram shown in Figure 2.1 is a general unity feedback system with compensator 

(controller) C(s) and a transfer function representing the plant, P(s). The measured output, 

Y(s), is supposed to track the reference signal R(s) and the tracking has to match to certain 

desired specifications. 



 

 

Figure 2.1: Unity feedback system. 

The output of this system can be written as: 

Y (s) = C(s)P(s) (R(s) − Y (s)) 

By solving for Y (s), we can find the closed-loop transfer function: 

(2.1.1) 

  (2.1.2) 

Recall in Laboratory: SRV02 Modelling Section 1, the SRV02 voltage-to-speed transfer 

function was derived. To find the voltage-to-position transfer function, we can put an 

integrator (1/s) in series with the speed transfer function (effectively integrating the speed 

output to get position). Then, the resulting open-loop voltage-to-load gear position transfer 

function becomes: 

                                                   (2.1.3) 

As you can see from this equation, the plant is a second order system. In fact, when a second 

order system is placed in series with a proportional compensator in the feedback loop as in 

Figure 2.1, the resulting closed-loop transfer function can be expressed as: 

  (2.1.4) 

where ωn is the natural frequency and ζ is the damping ratio. This is called the standard 

second-order transfer function. Its response proporeties depend on the values of ωn and ζ. 

2.1.1.1 Peak Time and Overshoot 

Consider a second-order system as shown in Equation 2.1.4 subjected to a step input given by 

  (2.1.5) 

with a step amplitude of R0 = 1.5. The system response to this input is shown in Figure 2.2, 

where the red trace is the response (output), y(t), and the blue trace is the step input r(t). The 

maximum value of the response is denoted by the variable ymax and it occurs at a time tmax. 

For a response similar to Figure 2.2, the percent overshoot is found using 

  (2.1.6) 



 

 

Figure 2.2: Standard second-order step response. 

From the initial step time, t0, the time it takes for the response to reach its maximum value is 

 tp = tmax − t0 (2.1.7) 

This is called the peak time of the system. 

In a second-order system, the amount of overshoot depends solely on the damping ratio 

parameter and it can be calculated using the equation 

  (2.1.8) 

The peak time depends on both the damping ratio and natural frequency of the system and it 

can be derived as: 

  (2.1.9) 

Generally speaking, the damping ratio affects the shape of the response while the natural 

frequency affects the speed of the response. 

2.1.1.2 Steady State Error 

Steady-state error is illustrated in the ramp response given in Figure 2.3 and is denoted by the 

variable ess. It is the difference between the reference input and output signals after the system 

response has settled. Thus, for a time t when the system is in steady-state, the steady-state 

error equals 

 ess = rss(t) − yss(t) (2.1.10) 

where rss(t) is the value of the steady-state input and yss(t) is the steady-state value of the 

output. 



 

We can find the error transfer function E(s) in Figure 2.1 in terms of the reference R(s), the 

plant P(s), and the compensator C(s). The Laplace transform of the error is 

 E(s) = R(s) − Y (s) (2.1.11) 

Solving for Y (s) from equation 2.1.3 and substituting it in equation 2.1.11 yields 

  (2.1.12) 

 

Figure 2.3: Steady-state error in ramp response. 

We can find the the steady-state error of this system using the final-value theorem: 

 ess = lim sE(s) (2.1.13) 
s→0 

In this equation, we need to substitute the transfer function for E(s) from 2.1.12. The E(s) 

transfer function requires, R(s), C(s) and P(s). For simplicity, let C(s)=1 as a compensator. 

The P(s) and R(s) were given by equations 2.1.3 and 2.1.5, respectively. Then, the error 

becomes: 

  (2.1.14) 

Applying the final-value theorem gives 

  (2.1.15) 

When evaluated, the resulting steady-state error due to a step response is  

ess = 0 (2.1.16) 

Based on this zero steady-state error for a step input, we can conclude that the SRV02 is a 

Type 1 system. 



 

2.1.1.3 SRV02 Position Control Specifications 

The desired time-domain specifications for controlling the position of the SRV02 load shaft 

are: 

ess = 0 (2.1.17) tp = 0.20 s         (2.1.18) 

and 

 PO = 5.0 % (2.1.19) 

Thus, when tracking the load shaft reference, the transient response should have a peak time 

less than or equal to 0.20 seconds, an overshoot less than or equal to 5 %, and the steady-state 

response should have no error. 

2.1.2 PV Controller Design 

2.1.2.1 Closed Loop Transfer Function 

The proportional-velocity (PV) compensator to control the position of the SRV02 has the 

following structure 

  (2.1.20) 

where kp is the proportional control gain, kv is the velocity control gain, θd(t) is the setpoint or 

reference load shaft angle, θl(t) is the measured load shaft angle, and Vm(t) is the SRV02 

motor input voltage. The block diagram of the PV control is given in Figure 2.4. We need to 

find the closed-loop transfer function Θl(s)/Θd(s) for the closed-loop 

 

Figure 2.4: Block diagram of SRV02 PV position control. 

position control of the SRV02. Taking the Laplace transform of equation 2.1.20 gives 

 Vm(s) = kp (Θd(s) − Θl(s)) − kv sΘl(s) (2.1.21) 

From the Plant block in Figure 2.4 and equation 2.1.3, we can write 



 

  (2.1.22) 

Substituting equation 2.1.21 into 2.1.22 and solving for Θl(s)/Θd(s) gives the SRV02 position 

closed-loop transfer function as: 

  (2.1.23) 

2.1.2.2 Controller Gain Limits 

In control design, a factor to be considered is saturation. This is a nonlinear element and is 

represented by a saturation block as shown in Figure 2.5. In a system like the SRV02, the 

computer calculates a numeric control voltage value. This value is then converted into a 

voltage, Vdac(t), by the digital-to-analog converter of the dataacquisition device in the 

computer. The voltage is then amplified by a power amplifier by a factor of Ka. If the 

amplified voltage, Vamp(t), is greater than the maximum output voltage of the amplifier or the 

input voltage limits of the motor (whichever is smaller), then it is saturated (limited) at Vmax. 

Therefore, the input voltage Vm(t) is the effective voltage being applied to the SRV02 motor. 

The limitations of the actuator must be taken into account when designing a controller. For 

instance, the voltage entering the SRV02 motor should never exceed 

 Vmax = 10.0 V (2.1.24) 

 

Figure 2.5: Actuator saturation. 

2.1.2.3 Ramp Steady State Error Using PV Control 

From our previous steady-state analysis, we found that the closed-loop SRV02 system is a 

Type 1 system. In this section, we will investigate the steady-state error due to a ramp input 

when using PV controller. 

Given the following ramp setpoint (input) 

  (2.1.25) 

we can find the error transfer function by substituting the SRV02 closed-loop transfer 

function in equation 2.1.23 into the formula given in 2.1.11. Using the variables of the 

SRV02, this formula can be rewritten as E(s) = Θd(s)−Θl(s). After rearranging the terms we 

find: 



 

  (2.1.26) 

Substituting the input ramp transfer function 2.1.25 into the Θd(s) variable gives 

  (2.1.27) 

2.1.3 PIV Controller 

Adding an integral control can help eliminate any steady-state error. We will add an integral 

signal (middle branch in Figure 2.6) to have a proportional-integral-velocity (PIV) algorithm 

to control the position of the SRV02. The motor voltage will be generated by the PIV 

according to: 

  (2.1.28) 

where ki is the integral gain. We need to find the closed-loop transfer function Θl(s)/Θd(s) for 

the closed-loop position control of the SRV02. Taking the Laplace transform of equation 

2.1.28 gives 

  (2.1.29) 

From the Plant block in Figure 2.6 and equation 2.1.3, we can write 

  (2.1.30) 

Substituting equation 2.1.29 into 2.1.30 and solving for Θl(s)/Θd(s) gives the SRV02 position 

closed-loop transfer function as: 

(2.1.31) 

 



 

Figure 2.6: Block diagram of PIV SRV02 position control. 

2.1.3.1 Ramp Steady-State Error using PIV Controller 

To find the steady-state error of the SRV02 for a ramp input under the control of the PIV 

substitute the closed-loop transfer function from equation 2.1.31 into equation 2.1.11 

  (2.1.32) 

Then, substituting the reference ramp transfer function 2.1.25 into the Θd(s) variable gives 

  (2.1.33) 

2.1.3.2 Integral Gain Design 

It takes a certain amount of time for the output response to track the ramp reference with zero 

steady-state error. This is called the settling time and it is determined by the value used for the 

integral gain. 

In steady-state, the ramp response error is constant. Therefore, to design an integral gain the 

velocity compensation (the V signal) can be neglected. Thus, we have a PI controller left as: 

Vm(t) = kp (θd(t) − θl(t)) + ki ∫ (θd(t) − θl(t)) dt 

When in steady-state, the expression can be simplified to 

(2.1.34) 

  (2.1.35) 

where the variable ti is the integration time. 

2.2 Pre-Lab Questions 

Before you start the lab experiments given in Section 2.3, you should study the background 

materials provided in Section 2.1 and work through the questions in this Section. 

1. Calculate the maximum overshoot of the response (in radians) given a step setpoint of 45 

degrees and the overshoot specification given in Section 2.1.1.3. 

Hint: By substituting ymax = θ(tp) and step setpoint R0 = θd(t) into equation 2.1.6, we can 

obtain θ(tp) = . Recall that the desired response specifications include 5% 

overshoot. 

Answer 2.2.1 



 

 Outcome Solution 
A-2 Substituting a step reference of θd(t) = 0.785 rad and PO = 

5 % into this equation gives the maximum overshoot 

as θ(tp) = 0.823 rad. 

2. The SRV02 closed-loop transfer function was derived in equation 2.1.23 in Section 

2.1.2.1. Find the control gains kp and kv in terms of ωn and ζ. Hint: Remember the 

standard second order system equation. 

Answer 2.2.2 

 Outcome Solution 
A-1 The characteristic equation of the SRV02 closed-loop 

transfer function in 2.1.7 is 

 τ s2 + (1 + K kv)s + K kp (Ans.2.2.1) 

and can be re-structured into the form 

  (Ans.2.2.2) 

Equating this with the standard second order system 

equation gives the expressions 

  (Ans.2.2.3) 

and 

(Ans.2.2.4) 

 A-2 Solve for kp and kv to obtain the control gains equations 

  (Ans.2.2.5) 

and the velocity gain is 

  (Ans.2.2.6) 

3. Calculate the minimum damping ratio and natural frequency required to meet the 

specifications given in Section 2.1.1.3. 

Answer 2.2.3 

Outcome 
A-2 Substitute the percent overshoot specifications given in 

2.1.19 into Equation 2.1.8 to get the required damping 

ratio 

 ζ = 0.690 (Ans.2.2.7) 

Using this result and the desired peak time, given in 

2.1.18, with Equation 2.1.9 gives the minimum natural 

frequency needed 



 

 ωn = 21.7 rad/s (Ans.2.2.8) 

4. Based on the nominal SRV02 model parameters, K and τ, found in Laboratory 1: SRV02 

Modeling, calculate the control gains needed to satisfy the time-domain response 

requirements given in Section 2.1.1.3. 

Answer 2.2.4 

 Outcome Solution 
 A-2 Using the model parameters 

 K = 1.53 rad/(V s) (Ans.2.2.9) 

and 

 τ = 0.0254 s (Ans.2.2.10) 

as well as the desired natural frequency found in 

Ans.2.2.8 with Equation Ans.2.2.5, generates the 

proportional control gain 

 kp = 7.82 V/rad (Ans.2.2.11) 

Similarly, the velocity control gain is obtained by 

substituting the model parameters given above with the 

minimum damping ratio specification, in Ans.2.2.7, into 

Equation Ans.2.2.6 

 kv = −0.157 V s/rad (Ans.2.2.12) 

Thus, when these gains are used with the PV controller, 

the position response of the load gear on an SRV02 with 

a disc load will satisfy the specifications listed in 

2.1.1.3. 

5. In the PV controlled system, for a reference step of π/4 (i.e. 45 degree step) starting from 

Θl(t) = 0 position, calculate the maximum proportional gain that would lead to providing 

the maximum voltage to the motor. Ignore the velocity control (kv = 0). Can the desired 

specifications be obtained based on this maximum available gain and what you calculated 

in question 4? 

Answer 2.2.5 

Outcome 
A-1 The maximum proportional gain leads to providing the 

maximum voltage to the motor. Therefore, the PV 

control in 3.1.15 becomes 

  (Ans.2.2.13) 



 

A-2 after substituting the maximum SRV02 input voltage 2.1.24 

for Vm(t), the reference step of π/4, and kv = 0 (to ignore 

the velocity control). Thus, the maximum proportional 

gain before saturating the SRV02 motor is 

  (Ans.2.2.14) 

A-3 The proportional gain designed in Ans.2.2.11 is below 

kp,max, therefore the desired specifications, can still be 

obtained. 

6. For the PV controlled closed-loop system, find the steady-state error and evaluate it 

numerically given a ramp with a slope of R0 = 3.36 rad/s. Use the control gains found in 

question 4. 

Answer 2.2.6 

 Outcome Solution 
A-1 Applying the final-value theorem to the error transfer 

function yields the expression 

  (Ans.2.2.15) 

 A-2 When evaluated, the resulting steady-state error is 

  (Ans.2.2.16) 

The steady-state error is a constant, which is as expected 

since the closed-loop SRV02 position system is Type 1. 

Evaluating the expression with the reference slope of 

3.36 rad/s, the model gain parameter K = 1.53, the 

proportional and velocity gains kp = 7.82 and kv = 0.157, 

gives the steady-state error 

 ess = 0.214 [rad] (Ans.2.2.17) 

7. What should be the integral gain ki so that when the SRV02 is supplied with the maximum 

voltage of Vmax = 10V it can eliminate the steady-state error calculated in question 6 in 1 

second? Hint: Start from equation 2.1.35 and use ti = 1, Vm(t) = 10, the kp you found in 

question 4 and ess found in question 6. Remember that ess is constant. 

Answer 2.2.7 

Outcome 
 A-2 Since ess is constant, evaluating the integral in Equation 2.1.35 yields 

 Vm(t) = kp ess + ki ti ess (Ans.2.2.18) 



 

Then, the integral gain is 

  (Ans.2.2.19) 

By substituting ti = 1.0sec, the maximum SRV02 voltage Vm(t) = 10V , kp = 7.82 

and the PV control steady-state error ess = 0.214 we find 

 ki = 38.9 V/(rad s) (Ans.2.2.20) 

2.3 Lab Experiments 

The main goal of this laboratory is to explore position control of the SRV02 load shaft using 

PV and PIV controllers. 

In this laboratory, you will conduct three experiments: 

1. Step response with PV controller, 

2. Ramp response with PV controller, and 

3. Ramp response with no steady-state error. 

You will need to design the third experiment yourself. In each experiment, you will first 

simulate the closed-loop response of the system. Then, you will implement the controller 

using the SRV02 hardware and software to compare the real response to the simulated one. 

2.3.1 Step Response Using PV Controller 

2.3.1.1 Simulation 

First, you will simulate the closed-loop response of the SRV02 with a PV controller to step 

input. Our goals are to confirm that the desired reponse specifications in an ideal situation are 

satisfied and to verify that the motor is not saturated. Then, you will explore the effect of 

using a high-pass filter, instead of a direct derivative, to create the velocity signal V in the 

controller. 

Experimental Setup 

The s_srv02_pos Simulinkrdiagram shown in Figure 2.7 will be used to simulate the closed-

loop position control response with the PV and PIV controllers. The SRV02 Model uses a 

Transfer Fcn block from the Simulinkrlibrary. The PIV Control subsystem contains the PIV 

controller detailed in Section 2.1.3. When the integral gain is set to zero, it essentially 

becomes a PV controller. 



 

 

Figure 2.7: Simulink model used to simulate the SRV02 closed-loop position response. 

IMPORTANT: Before you can conduct these experiments, you need to make sure that the 

lab files are configured according to your SRV02 setup. If they have not been configured 

already, then you need to go to Section 2.4.2 to configure the lab files first. 

Closed-loop Response with the PV Controller 

1. Enter the proportional and velocity control gains found in Pre-Lab question 4 in Matlabras 

kp and kv. 

2. To generate a step reference, ensure the SRV02 Signal Generator is set to the following: 

• Signal type = square 

• Amplitude = 1 

• Frequency = 0.4 Hz 

3. In the Simulinkrdiagram, set the Amplitude (rad) gain block to π/8(rad) to generate a step 

with an amplitude of 45 degrees (i.e., square wave goes between ±π/8 which results in a step 

amplitude of π/4) . 

4. Inside the PIV Control subsystem, set the Manual Switch to the upward position so the 

Derivative block is used. 

5. Open the load shaft position scope, theta_l (rad), and the motor input voltage scope, Vm (V). 

6. Start the simulation. By default, the simulation runs for 5 seconds. The scopes should be 

displaying responses similar to figures 2.8 and 2.9 Note that in the theta_l (rad) scope, the 

yellow trace is the setpoint position while the purple trace is the simulated position 

(generated by the SRV02 Model block). This simulation is called the Ideal PV response as it 

uses the PV compensator with the derivative block. 



 

 

Figure 2.8: Ideal PV position 

response. 

Figure 2.9: Ideal PV motor 

input voltage. 

7. Generate a Matlabrfigure showing the Ideal PV position response and the ideal input voltage. 

After each simulation run, each scope automatically saves their response to a variable in the 

Matlabrworkspace. That is, the theta_l (rad) scope saves its response to the variable called 

data_pos and the Vm (V) scope saves its data to the data_vm variable. The data_pos variable 

has the following structure: data_pos(:,1) is the time vector, data_pos(:,2) is the setpoint, 

and data_pos(:,3) is the simulated angle. For the data_vm variable, data_vm(:,1) is the time 

and data_vm(:,2) is the simulated input voltage. 

Answer 2.3.1 

 Outcome Solution 

K-3 The closed-loop position response with the straight 

derivative, i.e. the ideal response, is shown in Figure 

2.10. This is generated using the sample_meas_tp_os.m 

script. To use this script, do the following: 

(a) Execute the setup_srv02_exp02_pos.m script with 

CONTROL_TYPE = 'AUTO_PV'. 

(b) Run the s_srv02_pos Simulinkrmodel. 

(c) Run the sample_meas_tp_os.m script. 

 8.Measure the steady-state error, the percent overshoot and the peak time of the simulated 

response. 

Does the response satisfy the specifications given in Section 2.1.1.3? Hint: Use the 

Matlabrginput command to take measurements off the figure. 



 

 

Figure 2.10: Ideal closed-loop PV position response. 

Answer 2.3.2 

 Outcome Solution 

K-1 Directly from the response shown in Figure 2.10, it is clear 

that the steady-state error is zero, thus 

 ess = 0 (Ans.2.3.1) 

Using Equation 2.1.7, the peak time of the response in Figure 2.10 is 

 tp = 0.20 s (Ans.2.3.2) 

Similarly, the percent overshoot is calculated using Equation 2.1.6 as 

 PO = 5.0 % (Ans.2.3.3) 

B-9 The response with the PV controller matches the 

specifications in Section 2.1.1.3 while maintaining a 

motor input voltage less than 10 V, i.e. the motor is not 

saturated. To find the peak time and percent overshoot 

of a response saved in data_pos automatically, run the 

sample_meas_tp_os.m script after running 

s_srv02_pos. 

Using a High-pass Filter Instead of Direct Derivative 

9. When implementing a controller on actual hardware, it is generally not advised to take the 

direct derivative of a measured signal. Any noise or spikes in the signal becomes amplified 

and gets multiplied by a gain and fed into the motor which may lead to damage. To remove 

any high-frequency noise components in the velocity signal, a low-pass filter is placed in 



 

series with the derivative, i.e. taking the high-pass filter of the measured signal. However, 

as with a controller, the filter must also be tuned properly. In addition, the filter has some 

adverse affects. Go in the PIV Control block and set the Manual Switch block to the down 

position to enable the high-pass filter. 

10. Start the simulation. The response in the scopes should still be similar to figures 2.8 and 

2.9. This simulation is called the Filtered PV response as it uses the PV controller with the 

high-pass filter block. 

11. Generate a Matlabrfigure showing the Filtered PV position and input voltage responses. 

Answer 2.3.3 

 Outcome Solution 

K-3 The Filtered PV step response is illustrated in Figure 

2.11. This is generated by executing the 

sample_meas_tp_os.m script after running the 

s_srv02_pos simulation. 

 

Figure 2.11: Filtered closed-loop PV position response. 

12. Measure the steady-state error, peak time, and percent overshoot. Are the specifications 

still satisfied without saturating the actuator? Recall that the peak time and percent 

overshoot should not exceed the values given in Section 2.1.1.3. Discuss the changes from 

the ideal response. Hint: The different in the response is minor. Make sure you use ginput 

to take precise measurements. 

Answer 2.3.4 

 Outcome Solution 

K-1 As with the ideal response, the steady-state error of the 

filtered response in Figure 2.11 is 

 ess = 0 (Ans.2.3.4) 

and the peak time is 



 

 tp = 0.20 s (Ans.2.3.5) 

Thus, the PV Filtered response satisfies the error and 

peak time specifications given in Section 2.1.1.3. 

The percent overshoot of the response shown in Figure 

2.11 is 

 PO = 5.76 % (Ans.2.3.6) 

B-9 This exceeds the 5 % overshoot requirement and, as a 

result, not all the specifications are satisfied. To find 

the peak time and percentage overshoot of a response 

saved in data_pos automatically, run the 

sample_meas_tp_os.m script after running 

s_srv02_pos. 

2.3.1.2 Implementing Step Response using PV Controller 

In this experiment, we will control the angular position of the SRV02 load shaft, i.e. the disc 

load, using the PV controller. Measurements will then be taken to ensure that the 

specifications are satisfied. 

Experimental Setup 

The q_srv02_pos Simulinkrdiagram shown in Figure 2.12 is used to implement the position 

control experiments. The SRV02-ET subsystem contains QUARC blocks that interface with 

the DC motor and sensors of the SRV02 system, as discussed in Section A. The PIV Control 

subsystem implements the PIV controller detailed in Section 2.1.3, except a high-pass filter is 

used to obtain the velocity signal (as opposed to taking the direct derivative). 

 

Figure 2.12: Simulink model used with QUARC to run the PV and PIV position controllers 

on the SRV02. 



 

IMPORTANT: Before you can conduct these experiments, you need to make sure that the 

lab files are configured according to your SRV02 setup. If they have not been configured 

already, then you need to go to Section 2.4.3 to configure the lab files first. 

1. Run the setup_srv02_exp02_pos.m script. 

2. Enter the proportional and velocity control gains found in Pre-Lab question 4. 

3. Set Signal Type in the SRV02 Signal Generator to square to generate a step reference. 

4. Set the Amplitude (rad) gain block to π/8 to generate a step with an amplitude of 45 

degrees. 

5. Open the load shaft position scope, theta_l (rad), and the motor input voltage scope, Vm 

(V). 

6. Click on QUARC | Build to compile the Simulinkrdiagram. 

7. Select QUARC | Start to begin running the controller. The scopes should display 

responses similar to figures 2.13 and 2.14 Note that in the theta_l (rad) scope, the yellow 

trace is the setpoint position while the purple trace is the measured position. 

8. When a suitable response is obtained, click on the Stop button in the Simulinkr diagram 

toolbar 

(or select QUARC | Stop from the menu) to stop running the code. Generate a 

Matlabrfigure showing the PV position response and its input voltage. 

As in the s_srv02_pos Simulink diagram, when the controller is stopped each scope 

automatically saves their response to a variable in the Matlabrworkspace. Thus the 

theta_l (rad) scope saves its response to the data_pos variable and the Vm (V) scope 

saves its data to the data_vm variable. 

 

Figure 2.13: Measured PV step response. 



 

               
Figure 2.14: PV control input voltage.  

If the experimental procedure is followed correctly, the measured SRV02 closed-loop position 

step response with the PV controller should be similar to Figure 2.15. 

Answer 2.3.5 

 To generate this response, execute the sample_meas_tp_os.m script with the saved 

MAT files data_step_rsp_theta.mat and data_step_rsp_Vm.mat. Alternatively, to 

generate a Matlabrfigure from a new experimental run do the following: 

(a) Execute the setup_srv02_exp02_pos.m script with CONTROL_TYPE = 

'AUTO_PV' 

(b) Run the q_srv02_pos Simulinkrmodel until a response fills the scopes. 

(c) Stop QUARCr. 

(d) Execute the sample_meas_tp_os.m script. 

 

Figure 2.15: Measured SRV02 step response using PV. 

9. Measure the steady-state error, the percent overshoot, and the peak time of the SRV02 

load gear. Does the response satisfy the specifications given in Section 2.1.1.3? 

Answer 2.3.6 



 

 Outcome Solution 

K-1 The steady-state error measured in Figure 2.15 at 1.1 

second after the peak time is 

 ess = 0.0138 rad (Ans.2.3.7) 

Thus, there is an error of about 0.79 degrees. 

The peak time and percent overshoot of the 

response shown in Figure 2.15, using Equation 

2.1.7 

and Equation 2.1.6, are 

 tp = 0.147 s (Ans.2.3.8) 

and 

 PO = 4.88 % (Ans.2.3.9) 

B-9 The actual measured SRV02 response does not 

quite satisfy the specifications given in Section 

2.1.1.3 because the steady-state error is not 

zero. However, without saturating the servo 

motor the peak time does not exceed 0.20 

seconds and the percent overshoot is below or 

equal to 5 %. Thus, the peak time and overshoot 

specifications are satisfied. The system, 

generally speaking, is more damped than 

predicted which leads to a lower overshoot. The 

constant steady-state error obtained along with 

the lower overshoot is due to un-modeled 

effects, notably friction. To find the steadystate 

error, peak time and percent overshoot of a 

response saved in data_pos automatically, run 

the sample_meas_tp_os.m script after running 

q_srv02_pos or using the responses saved in the 

MAT files data_step_rsp_theta.mat and 

data_step_rsp_Vm.mat. 

10. Click the Stop button on the Simulinkrdiagram toolbar (or select QUARC | Stop from the 

menu) to stop the experiment. 

11. Turn off the power to the amplifier if no more experiments will be performed on the 

SRV02 in this session. 



 

2.3.2 Ramp Response Using PV Controller 

2.3.2.1 Simulation 

In this simulation, the goal is to verify that the system with the PV controller can meet the 

zero steady-state error specification without saturating the motor. 

As in the Step Response experiment in Section 2.3.1, in this experiment you need to use the 

s_srv02_pos Simulinkrdiagram shown in Figure 2.7 in Section 2.3.1.1 again. 

1. Enter the proportional and velocity control gains found in Pre-Lab question 4. 

2. Set the SRV02 Signal Generator parameters to the following to generate a triangular 

reference (which corresponds to a ramp input): 

• Signal Type = triangle 

• Amplitude = 1 

• Frequency = 0.8 Hz 

3. Setting the frequency to 0.8 Hz will generate an increasing and decreasing ramp signal with 

the same slope used in the Pre-Lab question 6. The slope is calculated from the Triangular 

Waveform amplitude, Amp, and frequency, f, using the expression. 

 R0 = 4Ampf (2.3.36) 

4. In the Simulinkrdiagram, set the Amplitude (rad) gain block to π/3. 

5. Inside the PIV Control subsystem, set the Manual Switch to the down position so that the 

High-Pass Filter block is used. 

6. Open the load shaft position scope, theta_l (rad), and the motor input voltage scope, Vm 

(V). 

7. Start the simulation. The scopes should display responses similar to figures 2.16 and 2.17. 

 

Figure 2.16: Ramp response 

using PV. 

Figure 2.17: Input voltage of 

ramp tracking using PV. 

8. Generate a Matlabrfigure showing the Ramp PV position response and its corresponding 

input voltage trace. 

Answer 2.3.7 



 

 Outcome Solution 

K-3 The closed-loop ramp response when using the PV control is 

shown in Figure 2.18. This is generated using the 

sample_meas_ess.m script. To use this script, do the 

following: 

 (a) Execute the setup_srv02_exp02_pos.m script with CON- 

TROL_TYPE = 

'AUTO_PV' (b) Run the 

s_srv02_pos Simulink model. 

(c) Run the sample_meas_ess.m script. 

9. Measure the steady-state error. Compare the simulation measurement with the steady-state 

error calculated in Pre-Lab question 6. 

 

Figure 2.18: Ramp response using PV. 

Answer 2.3.8 

 Outcome Solution 

K-1 The error between the reference and the simulated 

response after running for 1.1 second is 

 ess = −0.213 rad (Ans.2.3.10) 

Its magnitude (or absolute value) is very close to the 

steady-state error predicted earlier in Ans.2.2.17. To 

find the steady-state error of a ramp response saved in 

data_pos automatically, run the sample_meas_ess.m 

script after running s_srv02_pos. It outputs the 

expected steady-state error when using the PV 

control, as found in the pre-lab, and the the error 

measured from the saved response. 



 

2.3.2.2 Implementing Ramp Response Using PV 

In this experiment, we will control the angular position of the SRV02 load shaft, i.e. the disc 

load, using a PV controller. The goal is to examine how well the system can track a triangular 

(ramp) position input. Measurements will then be taken to ensure that the specifications are 

satisfied. 

As in the Step Response experiment in Section 2.3.1, in this experiment you also need to use 

the q_srv02_pos Simulinkrdiagram shown in Figure 2.12 to implement the position control 

experiments. 

1. Run the setup_srv02_exp02_pos.m script. 

2. Enter the proportional and velocity control gains found in Pre-Lab question 4. 

3. Set the SRV02 Signal Generator parameters to the following to generate a triangular 

reference (i.e., ramp reference): 

• Signal Type = triangle 

• Amplitude = 1 

• Frequency = 0.8 Hz 

4. In the Simulinkrdiagra, set the Amplitude (rad) gain block to π/3. 

5. Open the load shaft position scope, theta_l (rad), and the motor input voltage scope, Vm 

(V). 

6. Click on QUARC | Build to compile the Simulinkrdiagram. 

7. Select QUARC | Start to run the controller. The scopes should display responses similar to 

figures 2.19 and 

2.20. 

 

Figure 2.19: Measured SRV02 

PV ramp response. 

Figure 2.20: Input voltage of 

PV ramp response. 

8. Generate a Matlabrfigure showing the Ramp PV position response and its corresponding 

input voltage trace. 

Answer 2.3.9 



 

 Outcome Solution 

B-5 If the experimental procedure is followed correctly, the 

measured SRV02 closed-loop position ramp response 

when using the PV control should be similar to Figure 

2.21. 

K-3 To generate this response, execute the 

sample_meas_ess_os.m script with the saved MAT files 

data_step_rsp_pv_theta.mat and 

data_step_rsp_pv_Vm.mat. Alternatively, to generate a 

Matlabrfigure from a new experimental run do the 

following: 

(a) Execute the setup_srv02_exp02_pos.m

 script with CONTROL_TYPE = 'AUTO_PV' 

(b) Run the q_srv02_pos Simulinkrmodel until a 

response fills the scopes. 

(c) Stop QUARCr. 

(d) Execute the sample_meas_ess_.m script. 

 

9. Measure the steady-state error and compare it with the steady-state error calculated in Pre-

Lab question 6. 

 

Figure 2.21: Measured SRV02 ramp response using PV. 

Answer 2.3.10 

 Outcome Solution 

K-1 The error between the reference and the measured 

response taken at the 1.0 second mark is 



 

 ess = 0.189 rad (Ans.2.3.11) 

B-9 This is slightly less than the steady-state error 

calculated earlier in Ans.2.2.17. 

To find the steady-state error of a ramp response 

saved in data_pos automatically, run the 

sample_meas_ess.m script using the saved response in 

the MAT files data_step_rsp_pv_theta.mat and 

data_step_rsp_pv_Vm.mat or after running 

q_srv02_pos. 

2.3.3 Ramp Response with No Steady-State Error 

Design an experiment to see if the steady-state error can be eliminated when tracking a ramp 

input. First simulate the response, then implement it using the SRV02 system. 

1. How can the PV controller be modified to eliminate the steady-state error in the ramp 

response? State your hypothesis and describe the anticipated cause-and-effect leading to 

the expected result. Hint: Look through Section 1. 

Answer 2.3.11 

 Outcome Solution 

B-1 Hypothesis: Adding an integral control will eliminate the 

steady-state error. Because, the integrator will 

accumulate the error over time causing the input 

voltage to the motor to increase to make up for the 

additional voltage needed to eliminate the steady-state 

error. 

Answer 2.3.12 

 Outcome Solution 

B-2 Refering to the controller in Figure 2.6, the dependent 

variable is Vm(s) and the independent variables are kp, 

kv, ki, θd(s) and θl(s). 

3. Your proposed control, like the PV compensator, are model-based controllers. This means 

that the control gains generated are based on mathematical representation of the system. 

Given this, list the assumptions you are making in this control design. State the reasons for 

your assumptions. 

Answer 2.3.13 

 Outcome Solution 

B-3 We assume that the friction in the system is negligable 

because it is a well-designed system. Also, noise in the 

                                                 
 



 

measured signals is neglected since its magnitude is very 

small compared to the magnitude of the measured 

signals. 

4. Give a brief, general overview of the steps involved in your experimental procedure for two 

cases: (1) Simulation, and (2) Implementation. 

Answer 2.3.14 

Outcome

 Solution B-4

 Simulation 

case: 

(a) Enter the integral gain computed in Pre-Lab question 

7 into Matlabr(Simulink diagram given in Figure 2.7). 

(b) Start the simulation. The Ramp PIV response in the 

scopes should be similar to figures 2.22 and 2.23. 

Implementation case: 

(a) Enter the integral gain computed in Pre-Lab question 

7 into Matlabr(Simulink diagram given in Figure 

2.12. Start the QUARC controller. The Ramp PIV 

response in the scopes should be similar to figures 

2.24 and 2.25. 

 

Figure 2.23: Input voltage 

using Figure 2.22: PIV ramp response. 

PIV control. 

5. For each case, generate a Matlabrfigure showing the position response of the system and its 

corresponding input voltage. 



 

 

Figure 2.24: Measured SRV02 PIV ramp response. 

                

Figure 2.25: Input voltage from PIV ramp control. 

 

K-3 Simulation case: After setting the integral gain in Ans.2.3.3 in Matlabr, the 

PIV Ramp response will be as shown in Figure 2.26. This plot can be 

generated by: 

(a) Executing the setup_srv02_exp02_pos.m

 script with CON- 

TROL_TYPE = 'AUTO_PV' 

(b) Running the s_srv02_pos Simulink model. 

(c) Running the sample_meas_ess.m script. 

K-3 Implementation case: To generate this response, run the sample_meas_ess.m 

script using the saved response in the MAT files 

data_step_rsp_piv_theta.mat and data_step_rsp_piv_Vm.mat. To 

generate a response after running q_srv02_pos, follow these steps: 

(a) Execute the setup_srv02_exp02_pos.m script with CON- 

TROL_TYPE = 'AUTO_PIV' 

(b) Run the q_srv02_pos Simulinkrmodel. 

(c) Stop QUARCrwhen a response fills the scopes. 

(d) Run the sample_meas_ess.m script. 

 6.In each case, measure the steady-state error. 



 

 

Figure 2.26: Ramp response using PIV control. 

 

Figure 2.27: Measured SRV02 closed-loop ramp response using PIV. 

Answer 2.3.16 

 Outcome Solution 

K-1 Simulation case: The steady-state PIV error measured from the response in Figure 

2.26 is 

 ess = −0.0125[rad] (Ans.2.3.12) 

and the input voltage is always below 10.0 V. This value is reasonably close to 

0.00 rad. Therefore, the specification is satisfied. To measure the steady-state 

error saved in data_pos automatically, run the sample_meas_ess.m script after 

running s_srv02_pos. 

K-1 Implementation case: The steady-state PIV error measured from the response in 

Figure 2.27 at the 1.0 second mark is 

 ess = −0.0343 rad (Ans.2.3.13) 



 

 
7. For each case comment on whether the steady-state specification given in Section 2.1.1.3 

was satisfied without saturating the actuator. 

Answer 2.3.17 

 Outcome Solution 

B-9 Both cases: Given that the servo motor is not saturated and 

the obtained error is reasonably close to 0.00 rad, the 

specification are satisfied in both cases. 

8. Click the Stop button on the Simulinkrdiagram toolbar (or select QUARC | Stop from the 

menu) to stop the experiment. 

9. Turn off the power to the amplifier if no more experiments will be performed on the SRV02 

in this session. 

 

2.3.4 Results 

Fill out Table 2.2 below with your answers to the Pre-Lab questions and your results from the 

lab experiments. 

Section / 

Question 

Description Symbol Value Unit 

Question 4 Pre-Lab: Model Parameters 
Open-Loop Steady-State Gain K 1.53 rad/(V.s) 

 Open-Loop Time Constant τ 0.0254 s 

Question 4 Pre-Lab: PV Gain Design 
Proportional gain kp 7.82 V/rad 

 Velocity gain kv -0.157 V.s/rad 

Question 5 Pre-Lab: Control Gain Limits 
Maximum proportional gain kp,max 12.7 V/rad 

Question 6 Pre-Lab: Ramp Steady-State 

Error 
Steady-state error using PV ess 0.214 rad 

Question 7 Pre-Lab: Integral Gain Design 
Integral gain ki 38.9 V/(rad.s) 

2.3.1.1 Step Response Simulation 
Peak time tp 0.20 s 

 Percent overshoot PO 5.0 % 

 Steady-state error ess 0.00 rad 

2.3.1.1 Filtered Step Response Using PV 
Peak time tp 0.20 s 

 Percent overshoot PO 5.76 % 

 Steady-state error ess 0.00 rad 

2.3.1.2 Step Response Implementation 
Peak time tp 0.147 s 



 

 Percent overshoot PO 4.88 % 

 Steady-state error ess 0.0138 rad 

2.3.2.1 Ramp Response Simulation with 

PV 
Steady-state error ess -0.213 rad 

2.3.2.2 Ramp Response Implementation 

with 

PV 
Steady-state error ess 0.189 rad 

2.3.3 Ramp Response Simulation with 

no 
steady-state error Steady-

state error ess -0.0125 rad 

2.3.3 Ramp Response Implementation 

with 
no steady-state error Steady-

state error ess -0.0343 rad 

Table 2.2: Summary of results for the SRV02 Position Control laboratory. 

2.4 System Requirements 

Before you begin this laboratory make sure: 

• QUARCris installed on your PC, as described in Reference [1]. 

• You have a QUARC compatible data-aquisition (DAQ) card installed in your PC. For a 

listing of compliant DAQ cards, see Reference [5]. 

• SRV02 and amplifier are connected to your DAQ board as described Reference [6]. 

2.4.1 Setup for Position Control Implementation 

Before beginning the lab experiments on the SRV02 device, the q_srv02_pos 

Simulinkrdiagram and the setup_srv02_exp02_pos script must be configured. 

Follow these steps to get the system ready for this lab: 

1. Setup the SRV02 in the high-gear configuration and with the disc load as described 

in Reference [6]. 

2. Load the Matlabrsoftware. 

3. Browse through the Current Directory window in Matlabrand find the folder that 

contains the SRV02 position control files, e.g. q_srv02_pos.mdl. 

4. Double-click on the q_srv02_pos.mdl file to open the Position Control 

Simulinkrdiagram shown in Figure 2.7. 



 

5. Configure DAQ: Double-click on the HIL Initialize block in the SRV02-ET 

subsystem (which is located inside the SRV02-ET Position subsystem) and ensure it 

is configured for the DAQ device that is installed in your system. See Section A for 

more information on configuring the HIL Initialize block. 

6. Configure Sensor: The position of the load shaft can be measured using various 

sensors. Set the Pos Src Source block in q_srv02_pos, as shown in Figure 2.7, as 

follows: 

• 1 to use the potentiometer 

• 2 to use to the encoder 

Note that when using the potentiometer, there will be a discontinuity. 

7. Configure setup script: Set the parameters in the setup_srv02_exp02_pos.m script 

according to your system setup. See Section 2.4.2 for more details. 

SRV02 SPEED CONTROL 

The objective of this laboratory is to develop feedback systems that control the speed of the 

rotary servo load shaft. A proportional-integral (PI) controller and a lead compensator are 

designed to regulate the shaft speed according to a set of specifications.  

Topics Covered 

• Design of a proportional-integral (PI) controller that regulates the angular speed of the 

servo load shaft. 

• Design of a lead compensator. 

• Simulation of the PI and lead controllers using the plant model to ensure the specifications 

are met without any actuator saturation. 

• Implemention of the controllers on the Quanser SRV02 device to evaluate their 

performance. 

Prerequisites 

In order to successfully carry out this laboratory, the user should be familiar with the 

following: 

• Data acquisition device (e.g. Q2-USB), the power amplifier (e.g. VoltPAQ-X1), and the 

main components of the SRV02 (e.g. actuator, sensors), as described in References [2], 

[4], and [6], respectively. 



 

• Wiring and operating procedure of the SRV02 plant with the amplifier and data-aquisition 

(DAQ) device, as discussed in Reference [6]. 

• Transfer function fundamentals, e.g. obtaining a transfer function from a differential 

equation. 

• Laboratory described in Appendix A to get familiar with using QUARCrwith the SRV02. 

3.1 Background 

3.1.1 Desired Response 

3.1.1.1 SRV02 Speed Control Specifications 

The time-domain requirements for controlling the speed of the SRV02 load shaft are: 

 ess = 0 (3.1.1) 

 tp ≤ 0.05 s, and (3.1.2) 

 PO ≤ 5 % (3.1.3) 

Thus, when tracking the load shaft reference, the transient response should have a peak time 

less than or equal to 0.05 seconds, an overshoot less than or equal to 5 %, and zero steady-

state error. 

In addition to the above time-based specifications, the following frequency-domain 

requirements are to be met when designing the Lead Compensator: 

 PM ≥ 75.0 deg (3.1.4) 

and 

 ωg = 75.0 rad/s (3.1.5) 

The phase margin mainly affects the shape of the response. Having a higher phase margin 

implies that the system is more stable and the corresponding time response will have less 

overshoot. The overshoot will not go beyond 5% with a phase margin of at least 75.0 degrees. 

The crossover frequency is the frequency where the gain of the Bode plot is 1 (or 0 dB). 

This parameter mainly affects the speed of the response, thus having a larger ωg decreases the 

peak time. With a crossover frequency of 75.0 radians the resulting peak time will be less 

than or equal to 0.05 seconds. 



 

3.1.1.2 Overshoot 

In this laboratory we will use the following step setpoint (input): 

 2.5 rad/s t ≤ t0 

                                                                     ωd(t) ={ (3.1.6) 

 7.5 rad/s t > t0 

where t0 is the time the step is applied. Initially, the SRV02 should be running at 2.5 rad/s and 

after the step time it should jump up to 7.5 rad/s. From the standard definition of overshoot in 

step response, we can calculate the maximum overshoot of the response (in radians): 

  (3.1.7) 

with the given values the maximum overshoot of the response is 

 ω(tp) = 7.75 rad/s (3.1.8) 

The closed-loop speed response should therefore not exceed the value given in Equation 

3.1.8. 

3.1.1.3 Steady State Error 

Consider the speed control system with unity feedback shown in Figure 3.1. Let the 

compensator be C(s) = 1. 

 

Figure 3.1: Unity feedback loop. 

We can find the steady-state error using the final value theorem: 

 ess = lim sE(s) (3.1.9) 
s→0 

where 

  (3.1.10) 

The voltage-to-speed transfer function for the SRV02 was found in Section 1 as: 

  (3.1.11) 

 



 

Substituting  and C(s) = 1 gives: 

  (3.1.12) 

Applying the final-value theorem to the system gives 

  (3.1.13) 

When evaluated, the resulting steady-state error due to a step response is 

  (3.1.14) 

3.1.2 PI Control Design 

3.1.2.1 Closed Loop Transfer Function 

The proportional-integral (PI) compensator used to control the velocity of the SRV02 has the 

following structure: 

 Vm(t) = kp (bsp ωd(t) − ωl(t)) − ki ∫ (ωd(t) − ωl(t))dt (3.1.15) 

 

Figure 3.2: Block diagram of SRV02 PI speed control. 

where kp is the proportional control gain, ki is the integral control gain, ωd(t) is the setpoint or 

reference angular speed for the load shaft, ωl(t) is the measured load shaft angular speed, bsp 

is the setpoint weight, and Vm(t) is the voltage applied to the SRV02 motor. The block 

diagram of the PI control is given in Figure 3.2. 

We can take Laplace transform of the controller given in Equation 3.1.15: 

  (3.1.16) 

To find the closed-loop speed transfer function, Ωl(s)/Ωd(s), we can use the process transfer 

function from Equation 3.1.11 and solve for Ωl(s)/Ωd(s) as: 



 

  (3.1.17) 

3.1.2.2 Finding PI Gains to Satisfy Specifications 

In this section, we will first calculate the minimum damping ratio and natural frequency 

required to meet the specifications given in Section 3.1.1.1. Then, using these values we will 

calculate the necessary control gains kp and ki to achieve the desired performance with a PI 

controller. 

The minimum damping ratio and natural frequency needed to satisfy a given percent 

overshoot and peak time are: 

  (3.1.18) 

and 

(3.1.19) 

− 

Substituting the percent overshoot specifications given in 3.1.3 into Equation 3.1.18 gives the 

required damping ratio 

 ζ = 0.690 (3.1.20) 

Then, by substituting this damping ratio and the desired peak time, given in 3.1.2, into 

Equation 3.1.19, the minimum natural frequency is found as: 

 ωn = 86.7 rad/s (3.1.21) 

Now, let's look at how we can calculate the gains. When the setpoint weight is zero, i.e. bsp = 

0, the closed-loop SRV02 speed transfer function has the structure of a standard second-

order system. We can find expressions for the control gains kp and ki by equating the 

characteristic equation (denominator) of the SRV02 closed-loop transfer function to the 

standard characteristic equation: s2 + 2ζ ωn s + ωn2. 

The denominator of the transfer function can be re-structured into the following: 

  (3.1.22) 

equating the coefficients of this equation to the coefficients of the standard characteristic 

equation gives: 

  (3.1.23) 

and 

                                      (3.1.24) 

Then, the proportional gain kp can be found as: 

  (3.1.25) 



 

and the integral gain ki is 

  (3.1.26) 

3.1.3 Lead Control Design 

Alternatively, a lead or lag compensator can be designed to control the speed of the servo. 

The lag compensator is actually an approximation of a PI control and this, at first, may seem 

like the more viable option. However, due to the saturation limits of the actuator the lag 

compensator cannot achieve the desired zero steady-state error specification. Instead, a lead 

compensator with an integrator, as shown in Figure 3.3, will be designed. 

 

Figure 3.3: Closed-loop SRV02 speed control with lead compensator. 

To obtain zero steady-state error, an integrator is placed in series with the plant. This system 

is denoted by the transfer function 

  (3.1.27) 

where P(s) is the plant transfer function in Equation 3.1.11. 

The phase margin and crossover frequency specifications listed in equations 3.1.4 and 3.1.5 of 

Section 3.1.1.1 can then be satisfied using a proportional gain Kc and the lead transfer function 

  (3.1.28) 

The a and T parameters change the location of the pole and the zero of the lead compensator 

which changes the gain and phase margins of the system. The design process involves 

examining the stability margins of the loop transfer function, L(s) = C(s) · P(s), where the 

compensator is given by: 

  (3.1.29) 

3.1.3.1 Finding Lead Compensator Parameters 

The Lead compensator is an approximation of a proportional-derivative (PD) control. A PD 

controller can be used to add damping to reduce the overshoot in the transient of a step 



 

response and effectively making the system more stable. In other words, it increases the phase 

margin. In this particular case, the lead compensator is designed for the following system: 

  (3.1.30) 

The proportional gain Kc is designed to attain a certain crossover frequency. Increasing the 

gain crossover frequency essentially increases the bandwidth of the system which decreases 

the peak time in the transient response (i.e. makes the response faster). However, as will be 

shown, adding a gain Kc > 1 makes the system less stable. The phase margin of the Lp(s) 

system is therefore lower than the phase margin of the Pi(s) system and this translates to 

having a large overshoot in the response. The lead compensator is used to dampen the 

overshoot and increase the overall stability of the system, i.e increase its phase margin. 

The frequency response of the lead compensator given in 3.1.28 is 

  (3.1.31) 

and its corresponding magnitude and phase equations are 

(3.1.32) 

and 

 − (3.1.33) 

The Bode plot of the lead compensator is shown in Figure 3.4. 

 

Figure 3.4: Bode of lead compensator. 

3.1.3.2 Lead Compensator Design using MATLAB 

In this section, we will use Matlabrto design a lead compensator that will satisfy the 

frequency-based specifications given in Section 3.1.1.1. 



 

1. Bode plot of the open-loop uncompensated system, Pi(s), must first be found. To 

generate the Bode plot of Pi(s), enter the following commands in Matlabr. NOTE: If 

your system has not been set up yet, then you need to first run the the 

setup_srv02_exp03_spd.m script. This script will store the model parameter K and tau in 

the Matlabrworkspace. These parameters are used with the commands tf and series to 

create the Pi(s) transfer function. The margin command generates a Bode plot of the 

system and it lists the gain and phase stability margins as well as the phase and gain 

crossover frequencies. 

% Plant transfer function 

P = tf([K],[tau 1]); 

% Integrator transfer function 

I = tf([1],[1 0]); 

% Plant with Integrator transfer function 

Pi = 

series(P,I)

; % Bode of 

Pi(s) 

figure(1) 

margin(Pi); 

set 

(1,'name','

Pi(s)'); 

The entire Lead compensator design is given in the d_lead.m script file. Run this script 

after running the setup_srv02_exp03_spd.m script when CONTROL_TYPE = 'AUTO' to 

generate a collection of Bode diagrams including the Bode of Pi(s) given in Figure 3.5. 

 

Figure 3.5: Bode of Pi(s) system. 



 

2. Find how much more gain is required such that the gain crossover frequency is 50.0 rad/s 

(use the ginput Matlabrcommand). As mentioned before, the lead compensator adds gain to 

the system and will increases the phase as well. Therefore, gain Kc is not to be designed to 

meet the specified 75.0 rad/s fully. 

As given in Figure 3.5, the crossover frequency of the uncompensated system is 1.53 rad/s. 

To move the crossover frequency to 50.0 rad/s, a gain of 

 Kc = 34.5 dB (3.1.34) 

or 

 Kc = 53.1 V/rad (3.1.35) 

in the linear range is required. The Bode plot of the loop transfer function Lp(s) (from 

Section 3.1.3) is given in Figure 3.6. This initial estimate of the gain was found using the 

ginput command. The gain was then adjusted according to the crossover frequency 

calculated in the generated Bode plot of the Lp(s) system. The commands used to generate 

the Bode plot are given in the d_lead.m script. 

 

Figure 3.6: Bode of Lp(s) system. 

3. Gain needed for specified phase margin must be found next so that the lead compensator 

can achieve the specified phase margin of 75 degrees. Also, to ensure the desired 

specifications are reached, we'll add another 5 degrees to the maximum phase of the lead. 

To attain the necessary phase margin, the maximum phase of the lead can be calculated 

using 

 ϕm = PMdes − PMmeas + 5 (3.1.36) 

Given that the desired phase margin in Equation 3.1.4 and the phase margin of Lp(s) is 

 PMmeas = 21.5 deg (3.1.37) 



 

the maximum lead phase has to be about 

 ϕm = 41.8 deg (3.1.38) 

or 

 ϕm = 0.728 rad (3.1.39) 

The lead compensator, as explained in Section 3.1.3.1, has two parameters: a and T . To 

attain the maximum phase ϕm shown in Figure 3.4, the Lead compensator has to add 20 

log10(a) of gain. This is determined using the equation 

  (3.1.40) 

The gain needed is found by inserting the max phase into this equation to get  

a = 4.96 

which is 

(3.1.41) 

20 log 10(a) = 13.9 dB (3.1.42) 

4. The frequency at which the lead maximum phase occurs must be placed at the new gain 

crossover frequency ωg,new. This is the crossover frequency after the lead compensator is 

applied. As illustrated in Figure 3.4, ωm occurs halfway between 0 dB and 20 log10(a), i.e. 

at 10 log10(a). So, the new gain crossover frequency in the Lp(s) system will be the 

frequency where the gain is −10 log10(a). 

From Figure 3.6, it is found that the frequency where the −10 log10(a) gain in the Lp(s) 

system occurs is at about 80.9 rad/s. Thus, the maximum phase of the lead will be set to 

 ωm = 80.9 rad/s (3.1.43) 

As illustrated earlier in Figure 3.4 in Section 3.1.3.1, the maximum phase occurs at the 

maximum phase frequency ωm. Parameter T given by: 

  (3.1.44) 

is used to attain a certain maximum phase frequency. This changes where the Lead 

compensator breakpoint frequencies 1/(a ∗ T) and 1/T shown in Figure 3.4 occur. The 

slope of the lead compensator gain changes at these frequencies. We can find the parameter 

T by substituting ωm = 80.9 and the lead gain value from Equation 3.1.41 into Equation 

3.1.44: 

T = 0.00556 
s/rad Therefore, the lead breakpoint frequencies are: 

(3.1.45) 

  rad/s (3.1.46) 

and 

  rad/s (3.1.47) 

5. Bode plot of the lead compensator Clead(s), defined in 3.1.28 can be generated using the 

d_lead.m script. 



 

 

Figure 3.7: Bode of lead compensator Clead(s). 

6. Bode plot of the loop transfer function L(s), as described in 3.1.30, can be generated using 

the d_lead.m script. The phase margin of L(s) is 68.1 degrees and is below the desired phase 

margin of 75.0 degrees, as specified in Section 3.1.1. 

7. Check response by simulating the system to make sure that the time-domain specifications 

are met. Keep in mind that the goal of the lead design is the same as the PI control, the 

response should meet the desired steady-state error, peak time, and percentage overshoot 

specifications given in Section 3.1.1. Thus, if the crossover frequency and/or phase margin 

specifications are not quite satisfied, the response should be simulated to verify if the time-

domain requirements are satisfied. If so, then the design is complete. If not, then the lead 

design needs to be re-visited. 

You will work on this later in the laboratory as described in Section 3.3.2.1. 

 



 

Figure 3.8: Bode of loop transfer function L(s). 

3.1.4 Sensor Noise 

When using analog sensors, such as a tachometer, there is often some inherent noise in the 

measured signal. 

The peak-to-peak noise of the measured SRV02 load gear signal can be calculated using 

  (3.1.48) 

where Kn is the peak-to-peak ripple rating of the sensor and ωl is the speed of SRV02 load 

gear. The rated peakto-peak noise of the SRV02 tachometer is given in Appendix B of 

Reference [6] as: 

 Kn = 7 % (3.1.49) 

Based on this specification, the peak-to-peak noise, when the load shaft runs at 7.5 rad/s, will 

be 

 eω = 0.525 rad/s (3.1.50) 

Thus, the signal will oscillate ±0.2625 rad/s about the 7.5 rad/s setpoint, or approximately 

between 7.24 rad/s and 7.76 rad/s. Then, taking the noise into account, what would be the 

maximum peak in the speed response that is to be expected? 

Equation 3.1.7 was used to find the peak value of the load gear response for a given percent 

overshoot. To take into account the noise in the signal, this formula is modified as follows: 

  (3.1.51) 

Given a reference signal that goes between 2.5 rad/s to 7.5 rad/s, as described in Section 

3.1.1.1, and the peak-topeak ripple estimate in Equation 3.1.50, the peak speed of the load 

gear, including the noise, can be found as: 

 ω(tp) = 8.01 rad/s (3.1.52) 

Using 

  (3.1.53) 

the new maximum percent overshoot for a 5.0 rad/s step is  

PO ≤ 10.2 % (3.1.54) 

3.2 Pre-Lab Questions 

1. Based on the steady-state error result of a step response from Equation ,what type of 

system is the SRV02 when performing speed control (Type 0, 1, or 2) and why? 



 

Answer 3.2.1 

 Outcome Solution 
A-3 This is a Type 0 system because the steady-state error is a 

constant given a step reference. 

2. The nominal SRV02 model parameters, K and τ, found in SRV02 Modeling Laboratory 

(Section 1) should be about 1.53 (rad/s-V) and 0.0254 sec, respectively. Calculate the PI 

control gains needed to satisfy the time-domain response requirements. 

Answer 3.2.2 

 Outcome Solution 
 A-2 Using the nominal SRV02 model parameters 

 K = 1.53 rad/(V.s) (Ans.3.2.1) 

and 

 τ = 0.0254 s (Ans.3.2.2) 

along with the damping ratio given in Equation 3.1.20 

with Equation 3.1.25 generates the proportional 

control gain 

 kp = 1.34 V/(rad/s) (Ans.3.2.3) 

The integral control gain is obtained by substituting 

the model parameters given above with the minimum 

natural frequency specification given in 3.1.21 into 

Equation 3.1.26 

 ki = 124.9 V/rad (Ans.3.2.4) 

Thus, if these gains are used, the speed response of 

the load gear on an SRV02 with a disc load will 

satisfy the specifications listed in Section 3.1.1.1. 

 3.Find the frequency response magnitude, |Pi(ω)|, of the transfer function Pi(s) given in 

Equation 3.1.27. 

Answer 3.2.3 

 Outcome Solution 
 A-2 The frequency response of Pi(s) is found by substituting s = j ω in 

3.1.27. 

(Ans.3.2.5) 

Taking the magnitude of this expression gives the 

frequency response gain 



 

  (Ans.3.2.6) 

4. Calculate the DC gain of Pi(s) given in Equation 3.1.27. Hint: The DC gain is the gain 

when the frequency is zero, i.e. ω = 0rad/s. However, because of its integrator, Pi(s) has a 

singularity at zero frequency. Therefore, the DC gain is not technically defined for this 

system. Instead, approximate the DC gain by using ω = 1rad/s. Make sure the DC gain 

estimate is evaluated numerically in dB using the nominal model parameters, K = 1.53 and 

τ = 0.0254, (or use what you found for K and τ in Section 1). 

Answer 3.2.4 

 Outcome Solution 
 A-2 Substituting ω = 1 rad/s gives the approximate DC gain of 

  (Ans.3.2.7) 

Substituting the nominal SRV02 model parameters in 

the above expression results in the DC gain estimate of 

 |Pi(1)| = 1.53 (Ans.3.2.8) 

or 

 |Pi(1)|dB = 3.70 dB (Ans.3.2.9) 

5. The gain crossover frequency, ωg, is the frequency at which the gain of the system is 1 or 0 

dB. Express the crossover frequency symbolically in terms of the SRV02 model parameters 

K and τ. Then, evaluate the expression using the nominal SRV02 model parameters K = 

1.53 and τ = 0.0254, (or use what you found for K and τ in Section 1). 

Answer 3.2.5 

 Outcome Solution 
 A-1 The crossover frequency is found by setting |Pi(ωg)| = 1 in equation 

Ans.3.2.6 and solving for ωg 

A-2 

  (Ans.3.2.10) 

When evaluated with the nominal SRV02 parameters, 

the frequency where the gain is 0 dB is 

 ωg = 1.524 rad/s (Ans.3.2.11) 

 

3 SRV02 SPECIFICATIONS 

Table 3.1 lists and characterizes the main parameters associated with the SRV02. Some of 

these are used in the mathematical model. More detailed information about the gears is 



 

given in Table 3.2 and the calibration gains for the various sensors on the SRV02 are 

summarized in Table 3.3. 

Symbol Description Value Variation 

Vnom Motor nominal input voltage 6.0 V  

Rm Motor armature resistance 2.6 Ω ± 12% 

Lm Motor armature inductance 0.18 mH  

kt Motor current-torque constant 7.68×10−3 N-m/A ± 12% 

km Motor back-emf constant 7.68×10−3 V/(rad/s) ± 12% 

Kg High-gear total gear ratio 70  

 Low-gear total gear ratio 14  

ηm Motor efficiency 0.69 ± 5% 

ηg Gearbox efficiency 0.90 ± 10% 

Jm,rotor Rotor moment of inertia 3.90×10−7 kg-m2 ± 10% 

Jtach Tachometer moment of inertia 7.06×10−8 kg-m2 ± 10% 

Jeq High-gear equivalent moment of 

inertia without external load 
2.087×10−3 kg-m2  

 Low-gear equivalent moment of 

inertia without external load 
9.7585×10−5 kg-m2  

Beq High-gear Equivalent viscous 

damping coefficient 

0.015 N-m/(rad/s)  

 Low-Gear Equivalent viscous 

damping coefficient 
1.50×10−4 N-

m/(rad/s) 

 

mb Mass of bar load 0.038 kg  

Lb Length of bar load 0.1525 m  

md Mass of disc load 0.04 kg  

rd Radius of disc load 0.05 m  

mmax Maximum load mass 5 kg  

f Maximum input voltage frequency 50 Hz  

max Maximum input current 1 A  

ωmax Maximum motor speed 628.3 rad/s  

Table 3.1: Main SRV02 Specifications 
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