
 

 

 

 

 

 

Lab Date:                 Number: 

        Name Surname: 

Lab Director:                Group/Sub-group: ….. / …. 

Lab Location: O Block - Automatic Control Laboratory 

Lab Name: Machine Theory - 3 

Subject: Position Control of Rotary Servo Base Unit (SRV02) using PV and PIV Controllers 

 

Apparatus and tools: 

- Computer with MATLAB-Simulink and QUARC software 

- Data acquisition device, power amplifier, and main components of the SRV02 (e.g. actuator, sensors). 

 

Aim of the experiment: 

-Deriving the dynamics equation and transfer function for the SRV02 servo plant using the first-principles. 

- Design of a proportional-velocity (PV) controller for position control of the servo load shaft to meet certain 

time-domain requirements. 

-Design of a proportional-velocity-integral (PIV) controller to track a ramp reference signal. 

-Implementation of the controllers on the Quanser SRV02 device to evaluate their performance. 

 

1 System Modeling 

1.1.1.1 Electrical Equations 

The DC motor armature circuit schematic and gear train is illustrated in Figure 1.1. As known Rm is the 

motor resistance, Lm is the inductance, and km is the back-emf constant. 

 
Figure 1.1: SRV02 DC motor armature circuit and gear train 

 

The back-emf (electromotive) voltage eb(t) depends on the speed of the motor shaft, ωm, and the back-emf 

constant of the motor, km. It opposes the current flow. The back emf voltage is given by: 

eb(t) = kmωm(t) 
Using Kirchoff's Voltage Law, we can write the following equation: 

(1.1.2) 

  (1.1.3) 

Since the motor inductance Lm is much less than its resistance, it can be ignored. Then, the equation becomes 

 Vm(t) − RmIm(t) − kmωm(t) = 0 (1.1.4) 
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Solving for Im(t), the motor current can be found as: 

  (1.1.5) 

1.1.1.2 Mechanical Equations 

In this section the equation of motion describing the speed of the load shaft, ωl, with respect to the applied 

motor torque, τm, is developed. Since the SRV02 is a one degree-of-freedom rotary system, Newton's 

Second Law of Motion can be written as: 

 J · α = τ (1.1.6) 

where J is the moment of inertia of the body (about its center of mass), α is the angular acceleration of the 

system, and τ is the sum of the torques being applied to the body. As illustrated in Figure 1.1, the SRV02 

gear train along with the viscous friction acting on the motor shaft, Bm, and the load shaft Bl are considered. 

The load equation of motion is 

    (1.1.7) 

where Jl is the moment of inertia of the load and τl is the total torque applied on the load. The load inertia 

includes the inertia from the gear train and from any external loads attached, e.g. disc or bar. The motor 

shaft equation is expressed as: 

  (1.1.8) 

where Jm is the motor shaft moment of inertia and τml is the resulting torque acting on the motor shaft from 

the load torque. The torque at the load shaft from an applied motor torque can be written as: 

 τl(t) = ηgKgτml(t) (1.1.9) 

where Kg is the gear ratio and ηg is the gearbox efficiency. The planetary gearbox that is directly mounted on 

the SRV02 motor is represented by the N1 and N2 gears in Figure 1.1 and has a gear ratio of 

  (1.1.10) 

This is the internal gear box ratio. The motor gear N3 and the load gear N4 are directly meshed together and 

are visible from the outside. These gears comprise the external gear box which has an associated gear ratio 

of 

  (1.1.11) 

The gear ratio of the SRV02 gear train is then given by: 

                                                                                    Kg = KgeKgi                                                                                                                               (1.1.12) 

Thus, the torque seen at the motor shaft through the gears can be expressed as: 

 

  (1.1.13) 

Intuitively, the motor shaft must rotate Kg times for the output shaft to rotate one revolution.  

θm(t) = Kgθl(t) (1.1.14) 

We can find the relationship between the angular speed of the motor shaft, ωm, and the angular speed of the 

load shaft, ωl by taking the time derivative: 

 ωm(t) = Kgωl(t) (1.1.15) 

To find the differential equation that describes the motion of the load shaft with respect to an applied motor 

torque substitute (1.1.13), (1.1.15) and (1.1.7) into (1.1.8) to get the following: 

  (1.1.16) 

Collecting the coefficients in terms of the load shaft velocity and acceleration gives 

  (1.1.17) 

Defining the following terms:   

 Jeq = ηgKg2Jm + Jl (1.1.18) 

simplifies the equation as: 

Beq = ηgKg2Bm + Bl (1.1.19) 



 

 

  (1.1.20) 

1.1.1.3 Combining the Electrical and Mechanical Equations 

In this section the electrical equation and the mechanical equation are brought together to get an expression 

that represents the load shaft speed in terms of the applied motor voltage. The motor torque is proportional 

to the voltage applied and is described as 

 τm(t) = ηmktIm(t) (1.1.21) 

where kt is the current-torque constant (N.m/A), ηm is the motor efficiency, and Im is the armature current. 

We can express the motor torque with respect to the input voltage Vm(t) and load shaft speed ωl(t) by 

substituting the motor armature current given by equation 1.1.5, into the current-torque relationship given in 

equation 1.1.21: 

  (1.1.22) 

To express this in terms of Vm and ωl, insert the motor-load shaft speed equation 1.1.15, into 1.1.22 to get: 

  (1.1.23) 

If we substitute (1.1.23) into (1.1.20), we get: 

  (1.1.24) 

After collecting the terms, the equation becomes 

  (1.1.25) 

This equation can be re-written as: 

  (1.1.26) 

where the equivalent damping term is given by: 

  (1.1.27) 

and the actuator gain equals 

  (1.1.28) 

Questions 

1. We obtained an equation (1.1.26) that described the dynamic behavior of the load shaft speed as a 

function of the motor input voltage. Starting from this equation, find the transfer function . 

 

 

 

 

2. Express the steady-state gain (K) and the time constant (τ) of the process model in terms of the Jeq, 

Beq,v, and Am parameters. 

 
 

 

3. Calculate the Beq,v and Am model parameters using the system specifications given in Table 3.1.  

 

 

 

 

4. Calculate the moment of inertia about the motor shaft. Note that Jm = Jtach + Jm,rotor where Jtach and 

Jm,rotor are the moment of inertia of the tachometer and the rotor of the DC motor, respectively. Use 

the specifications given in Table 3.1. 

 

 



 

 

5. The load attached to the motor shaft includes a 24-tooth gear, two 72-tooth gears, and a single 120-

tooth gear along with any other external load that is attached to the load shaft. Thus, for the gear 

moment of inertia Jg and the external load moment of inertia Jl,ext, the load inertia is Jl = Jg +Jl,ext. Using 

the specifications given in Table 3.2, find the total moment of inertia Jg from the gears . Hint: Use 

the definition of moment of inertia for a disc . 

 

 

 

 

 

 

 

6. Assuming the disc load is attached to the load shaft, calculate the inertia of the disc load, Jext,l, and 

the total load moment of inertia, Jl. (Use md  and rd  in Table 3.1) 

 

 

 

7. Evaluate the equivalent moment of inertia Jeq. 

 

 

 

8. Calculate the steady-state model gain K and time constant τ.  

 

 

 

2 POSITION CONTROL 

2.1.1 Steady State Error 

Steady-state error is denoted by the variable ess. It is the difference between the reference input and output 

signals after the system response has settled. Thus, for a time t when the system is in steady-state, the 

steady-state error equals 

 ess = rss(t) − yss(t) (2.1.10) 

where rss(t) is the value of the steady-state input and yss(t) is the steady-state value of the output. 

 
Figure 2.1: Unity feedback system. 

 

We can find the error transfer function E(s) in Figure 2.1 in terms of the reference R(s), the plant P(s), and 

the compensator C(s). The Laplace transform of the error is 

 E(s) = R(s) − Y (s) (2.1.11) 

Solving for Y (s) Figure 2.1 yields 

  (2.1.12) 

We can find the the steady-state error of this system using the final-value theorem: 

 ess = lim sE(s) (2.1.13) 
                                                                                                                                                             s→0 
In this equation, we need to substitute the transfer function for E(s) from 2.1.12. The E(s) transfer function 

requires, R(s), C(s) and P(s). For simplicity, let C(s)=1 as a compensator. Then, the error becomes: 

 , (step input)   =>             (2.1.14) 

Applying the final-value theorem gives 



 

 

  (2.1.15) 

When evaluated, the resulting steady-state error due to a step response is  

ess = 0 (2.1.16) 

Based on this zero steady-state error for a step input, we can conclude that the SRV02 is a Type 1 system. 

2.1.2 SRV02 Position Control Specifications 

The desired time-domain specifications for controlling the position of the SRV02 load shaft are: 

ess = 0                                                                      (2.1.17)  

tp = 0.20 s                                                  (2.1.18) 

 PO = 5.0 % (2.1.19) 

Thus, when tracking the load shaft reference, the transient response should have a peak time less than or 

equal to 0.20 seconds, an overshoot less than or equal to 5 %, and the steady-state response should have no 

error. 

2.1.3 PV Controller Design 

2.1.3.1 Closed Loop Transfer Function 

The proportional-velocity (PV) compensator to control the position of the SRV02 has the following 

structure 

  (2.1.20) 

where kp is the proportional control gain, kv is the velocity control gain, θd(t) is the setpoint or reference load 

shaft angle, θl(t) is the measured load shaft angle, and Vm(t) is the SRV02 motor input voltage. The block 

diagram of the PV control is given in Figure 2.4. We need to find the closed-loop transfer function 

Θl(s)/Θd(s) for the closed-loop position control of the SRV02. Taking the Laplace transform of equation 

2.1.20 gives 

 Vm(s) = kp (Θd(s) − Θl(s)) − kv sΘl(s) (2.1.21) 

To find the voltage-to-position transfer function, we can put an integrator (1/s) in series with the speed 

transfer function (effectively integrating the speed output to get position). From the Plant block in Figure 2.4 

and this transfer function, we can write 

  (2.1.22) 

Substituting equation 2.1.21 into 2.1.22 and solving for Θl(s)/Θd(s) gives the SRV02 position closed-loop 

transfer function as: 

  (2.1.23) 

 
Figure 2.4: Block diagram of SRV02 PV position control 

 

2.1.3.2 Ramp Steady State Error Using PV Control 

From our previous steady-state analysis, we found that the closed-loop SRV02 system is a Type 1 system. In 

this section, we will investigate the steady-state error due to a ramp input when using PV controller. Given 

the following ramp setpoint (input) 



 

 

  (2.1.25) 

we can find the error transfer function by substituting the SRV02 closed-loop transfer function in equation 

2.1.23 into the formula given in 2.1.11. Using the variables of the SRV02, this formula can be rewritten as 

E(s) = Θd(s)−Θl(s). After rearranging the terms we find: 

  (2.1.26) 

Substituting the input ramp transfer function 2.1.25 into the Θd(s) variable gives 

  (2.1.27) 

2.2 PIV Controller 

Adding an integral control can help eliminate any steady-state error. We will add an integral signal (middle 

branch in Figure 2.6) to have a proportional-integral-velocity (PIV) algorithm to control the position of the 

SRV02. The motor voltage will be generated by the PIV according to: 

  (2.1.28) 

where ki is the integral gain. We need to find the closed-loop transfer function Θl(s)/Θd(s) for the closed-

loop position control of the SRV02. Taking the Laplace transform of equation 2.1.28 gives 

  (2.1.29) 

From the Plant block in Figure 2.6 and the open-loop voltage-to-position transfer function, we can write 

  (2.1.30) 

Substituting equation 2.1.29 into 2.1.30 and solving for Θl(s)/Θd(s) gives the SRV02 position closed-loop 

transfer function as: 

      (2.1.31) 

 
Figure 2.6: Block diagram of PIV SRV02 position control 

 

2.2.1 Ramp Steady-State Error using PIV Controller 

To find the steady-state error of the SRV02 for a ramp input under the control of the PIV substitute the 

closed-loop transfer function from equation 2.1.31 into equation 2.1.11 

  (2.1.32) 

Then, substituting the reference ramp transfer function 2.1.25 into the Θd(s) variable gives 

  (2.1.33) 



 

 

2.2.2 Integral Gain Design 

It takes a certain amount of time for the output response to track the ramp reference with zero steady-state 

error. This is called the settling time and it is determined by the value used for the integral gain. 

In steady-state, the ramp response error is constant. Therefore, to design an integral gain the velocity 

compensation (the V signal) can be neglected. Thus, we have a PI controller left as: 

           Vm(t) = kp (θd(t) − θl(t)) + ki ∫ (θd(t) − θl(t)) dt (2.1.34) 

When in steady-state, the expression can be simplified to 

  (2.1.35) 

where the variable ti is the integration time. 

Questions 

1. The SRV02 closed-loop transfer function was derived in equation 2.1.23. Find the control gains kp and 

kv in terms of ωn and ζ. Hint: Remember the standard second order system equation. 

 

 

 

 

 

 

 

 

2. Calculate the minimum damping ratio and natural frequency required to meet the specifications given 

in 2.1.17-2.1.19. 

 
 

 
 

 

3. Based on the nominal SRV02 model parameters, K and τ, calculate the control gains needed to satisfy 

the time-domain response requirements given in 2.1.17-2.1.19. 

 

 

 

 

4. For the PV controlled closed-loop system, find the steady-state error and evaluate it numerically given 

a ramp with a slope of R0 = 3.36 rad/s. Use the control gains found before. 

 

 

 

 

 

5. What should be the integral gain ki  so that when the SRV02 is supplied with the maximum voltage of 

Vmax = 10V it can eliminate the steady-state error calculated above in 1 second? Hint: Start from 

equation 2.1.35 and use ti = 1, Vm(t) = 10, the kp and ess you found. Remember that ess is constant. 

 

 

 

 

2.3.1 Implementing Step Response using PV Controller 

In this experiment, we will control the angular position of the SRV02 load shaft, i.e. the disc load, using the 

PV controller. Measurements will then be taken to ensure that the specifications are satisfied. 



 

 

Experimental Setup 
The q_srv02_pos Simulink diagram shown in Figure 2.12 is used to implement the position control 

experiments. The SRV02-ET subsystem contains QUARC blocks that interface with the DC motor and 

sensors of the SRV02 system. The PIV Control subsystem implements the PIV controller, except a high-

pass filter is used to obtain the velocity signal (as opposed to taking the direct derivative). 

 
Figure 2.12: Simulink model used with QUARC to run the PV and PIV position controllers on the SRV02. 

1. Run the setup_srv02_exp02_pos.m script with CONTROL_TYPE = 'AUTO_PV'. 

2. Enter the proportional and velocity control gains. 

3. To generate a step reference, ensure the SRV02 Signal Generator is set to the following: 

 Signal type = square 

 Amplitude = 1 

 Frequency = 0.4 Hz 

4. Set the Amplitude (rad) gain block to π/8 to generate a step with an amplitude of 45 degrees. 

5. Open the load shaft position scope, theta_l (rad), and the motor input voltage scope, Vm (V). Note that in 

the theta_l (rad) scope, the yellow trace is the setpoint position while the purple trace is the measured 

position. 

6. Click on QUARC | Build to compile the Simulink diagram. 

7. Select QUARC | Start to begin running the controller. 

8. When a suitable response is obtained, click on the Stop button in the Simulink diagram toolbar (or select 

QUARC | Stop from the menu) to stop running the code. Generate a Matlab figure showing the PV 

position response and its input voltage similar to Figure 2.15. 

 
Figure 2.15: Measured SRV02 step response using PV. 

9. Measure the steady-state error, the percent overshoot, and the peak time of the SRV02 load gear. 

Does the response satisfy the specifications given in 2.1.17-2.1.19? 



 

 

 

 

 

2.3.2 Implementing Ramp Response Using PV 

In this experiment, we will control the angular position of the SRV02 load shaft, i.e. the disc load, using a 

PV controller. The goal is to examine how well the system can track a triangular (ramp) position input. 

Measurements will then be taken to ensure that the specifications are satisfied. 

As in the Step Response experiment, in this experiment you also need to use the q_srv02_pos Simulink 

diagram shown in Figure 2.12 to implement the position control experiments. 

1. Run the setup_srv02_exp02_pos.m script with CONTROL_TYPE = 'AUTO_PV'. 

2. Enter the proportional and velocity control gains. 

3. Set the SRV02 Signal Generator parameters to the following to generate a triangular reference (i.e., ramp 

reference): 

• Signal Type = triangle 

• Amplitude = 1 

• Frequency = 0.8 Hz 

4. In the Simulink diagram, set the Amplitude (rad) gain block to π/3. 

5. Generate a Matlab figure showing the Ramp PV position response and its corresponding input voltage 

trace similar to Figure 2.21. 

 
Figure 2.21: Measured SRV02 ramp response using PV. 

9. Measure the steady-state error and compare it with the steady-state error calculated before. 

 

 

 

 

2.3.3 Ramp Response with No Steady-State Error 

Design an experiment to see if the steady-state error can be eliminated when tracking a ramp input. In this 

experiment, we will control the angular position of the SRV02 load shaft, i.e. the disc load, using a PIV 

controller. The goal is to examine how well the system can track a triangular (ramp) position input. 

1. Run the setup_srv02_exp02_pos.m script with CONTROL_TYPE = 'AUTO_PIV'. 

2. Enter the proportional and velocity control gains. 

3. Set the SRV02 Signal Generator parameters to the following to generate a triangular reference (i.e., 

ramp reference): 

Signal Type = triangle, Amplitude = 1, Frequency = 0.8 Hz 

4. In the Simulink diagram, set the Amplitude (rad) gain block to π/3. 

Questions 

1. How can the PV controller be modified to eliminate the steady-state error in the ramp response? 

State your hypothesis and describe the anticipated cause-and-effect leading to the expected result. 



 

 

 

 

 

2. List the independent and dependent variables of your proposed controller. Explain their relationship. 

 

 

 

3. Your proposed control, like the PV compensator, are model-based controllers. This means that the 

control gains generated are based on mathematical representation of the system. Given this, list the 

assumptions you are making in this control design. State the reasons for your assumptions. 

 

 

4. Generate a Matlab figure showing the position response of the system and its corresponding input 

voltage similar to Figure 2.27. 

 
Figure 2.27: Measured SRV02 closed-loop ramp response using PIV. 

5. Measure the steady-state error. 

 

 

 

2.3.4 Results 
Description Symbol Value Unit 

Pre-Lab: Ramp Steady-State Error 
Steady-state error using PV ess  rad 

Step Response Simulation 
Peak time tp 0.20 s 

Percent overshoot PO 5.0 % 

Steady-state error ess 0.00 rad 

Step Response Implementation 
Peak time tp  s 

Percent overshoot PO  % 

Steady-state error ess  rad 

Ramp Response Simulation with PV 
Steady-state error ess -0.213 rad 

Ramp Response Implementation with PV 
Steady-state error ess  rad 

Ramp Response Simulation with no steady-state error  

Steady-state error ess -0.0125 rad 

Ramp Response Implementation with no steady-state error  

Steady-state error ess  rad 

Table 2.1: Summary of results for the SRV02 Position Control laboratory. 



 

 

 

3 SRV02 SPECIFICATIONS 

Table 3.1 lists and characterizes the main parameters associated with the SRV02. Some of these are used in 

the mathematical model. More detailed information about the gears is given in Table 3.2. 

 

Symbol Description Value Variation 

Vnom Motor nominal input voltage 6.0 V  

Rm Motor armature resistance 2.6 Ω ± 12% 

Lm Motor armature inductance 0.18 mH  

kt Motor current-torque constant 7.68×10−3 N-m/A ± 12% 

km Motor back-emf constant 7.68×10−3 V/(rad/s) ± 12% 

Kg High-gear total gear ratio 70  

ηm Motor efficiency 0.69 ± 5% 

ηg Gearbox efficiency 0.90 ± 10% 

Jm,rotor Rotor moment of inertia 3.90×10−7 kg-m2 ± 10% 

Jtach Tachometer moment of inertia 7.06×10−8 kg-m2 ± 10% 

Jeq High-gear equivalent moment of 

inertia without external load 
2.087×10−3 kg-m2  

Beq High-gear Equivalent viscous 

damping coefficient 

0.015 N-m/(rad/s)  

mb Mass of bar load 0.038 kg  

Lb Length of bar load 0.1525 m  

md Mass of disc load 0.04 kg  

rd Radius of disc load 0.05 m  

mmax Maximum load mass 5 kg  

f Maximum input voltage frequency 50 Hz  

max Maximum input current 1 A  

ωmax Maximum motor speed 628.3 rad/s  

Table 3.1: Main SRV02 Specifications 

 

 
 


